
Programming Fundamentals
CC-111

Week-04-05

Dr. Muhammad Nadeem Majeed
Associate Professor

Department of Data Science
University of the Punjab, Lahore

Certifications:

Project Management Professional (PMP)®

PRINCE2 Agile Practitioner

Professional Scrum Master (PSM)

Certified Lean Six Sigma Green Belt (CSSC)

ITIL Certified

Cisco Certified Network Associate (CCNA)

1-2

Topics

3.1 The cin Object

3.2 Mathematical Expressions

3.3 Data Type Conversion and Type Casting

3.4 Overflow and Underflow

3.5 Named Constants

3-3

Topics (continued)

3.6 Multiple and Combined Assignment

3.7 Formatting Output

3.8 Working with Characters and Strings

3.9 More Mathematical Library Functions

3.10 Random Numbers

3-4

3.1 The cin Object

• cin is the standard input object
• Like cout, requires iostream file
• Used to read input from keyboard
• Often used with cout to display a user

prompt first
• Data is retrieved from cin with >>, the

stream extraction operator
• Input data is stored in one or more

variables
3-5

The cin Object

• User input goes from keyboard to the input buffer, where it
is stored as characters

• cin converts the data to the type that matches the
variable
int height;
cout << "How tall is the room? ";
cin >> height;

3-6

The cin Object

• Can be used to input multiple values
cin >> height >> width;

• Multiple values from keyboard must be separated by spaces or
[Enter]

• Must press [Enter] after typing last value
• Multiple values need not all be of the same type
• Order is important; first value entered is stored in first variable, etc.

3-7

3.2 Mathematical Expressions

• An expression is something that can be evaluated to produce a
value.

• It can be a constant, a variable, or a combination of constants and
variables combined with operators and grouping symbols

• We can create complex expressions using multiple mathematical
operators

• Examples of mathematical expressions:
 2

 height
 a + b / c

3-8

Using Mathematical Expressions

• Can be used in assignment statements, with cout,
and in other types of statements

• Examples:

 area = 2 * PI * radius;
cout << "border is: " << (2*(l+w));

3-9

This is an
expression

These are
expressions

Order of Operations

In an expression with > 1 operator, evaluate
it in this order:

 () expressions in parentheses
 - (unary negation) in order, left to right
 * / % in order, left to right
 + - in order, left to right

Ex: In the expression 2 + 2 * 2 – 2 ,

3-10

Do first:

Do next:

Do next:

Evaluate
1st

Evaluate
2nd

Evaluate
3rd

Do last:

Associativity of Operators

• - (unary negation) associates right to left
• * / % + - all associate left to right
• parentheses () can be used to override the

order of operations

3-11

Expression Value

2 + 2 * 2 – 2 4

(2 + 2) * 2 – 2 6

2 + 2 * (2 – 2) 2

(2 + 2) * (2 – 2) 0

Algebraic Expressions

• Multiplication requires an operator
Area = lw is written as Area = l * w;

• There is no exponentiation operator
Area = s2 is written as Area = pow(s, 2);

 (note: pow requires the cmath header file)

• Parentheses may be needed to maintain order of
operations

is written as
m = (y2-y1)/(x2-x1);

3-12

3.3 Data Type Conversion
and Type Casting

• Operations are performed between
operands of the same type

• If operands do not have the same type,
C++ will automatically convert one to be
the type of the other

• This can impact the results of calculations

3-13

Hierarchy of Data Types

• Highest

• Lowest
• Ranked by largest number they can hold

3-14

long double
double
float
unsigned long long int
long long int
unsigned long int
long int
unsigned int
int

Type Coercion

• Coercion: automatic conversion of an operand to another
data type

• Promotion: conversion to a higher type

• Demotion: conversion to a lower type

3-15

Coercion Rules

1) char, short, unsigned short are automatically
promoted to int

2) When operating with values of different data types, the
lower-ranked one is promoted to the type of the higher
one.

3) When using the = operator, the type of expression on right
will be converted to the type of variable on left

3-16

Coercion Rules – Important Notes

1) If demotion is required by the = operator,
- the stored result may be incorrect if there is not enough space

available in the receiving variable
- floating-point values are truncated when assigned to integer

variables
2) Coercion affects the value used in a calculation. It does

not change the type associated with a variable.

3-17

Type Casting

• Is used for manual data type conversion
• Format
static_cast<Data Type>(Value)

• Example:
cout << static_cast<int>(4.2);

 // Displays 4

3-18

More Type Casting Examples

 char ch = 'C';
 cout << ch << " is stored as "
 << static_cast<int>(ch);

 gallons = static_cast<int>(area/500);

 avg = static_cast<double>(sum)/count;

3-19

Older Type Cast Styles

 double volume = 21.58;
int intVol1, intVol2;
intVol1 = (int) volume; // C-style

 // type cast
 intVol2 = int (volume); //Prestandard
 // C++ style

 // type cast
C-style cast uses prefix notation
Prestandard C++ cast uses functional notation
static_cast is the current standard

3-20

3.4 Overflow and Underflow

• Occurs when assigning a value that is too large (overflow)
or too close to zero (underflow) to be held in a variable

• This occurs with both int and floating-point data types

3-21

Overflow Example

// Create a short int initialized to
// the largest value it can hold
short int num = 32767;

cout << num; // Displays 32767
num = num + 1;
cout << num; // Displays -32768

3-22

Handling Overflow and Underflow

Different systems handle the problem
differently. They may
– display a warning / error message
– stop the program
– continue execution with the incorrect value
Using variables with appropriately-sized data

types can minimize this problem

3-23

3.5 Named Constants

• Also called constant variables
• Variables whose content cannot be changed

during program execution
• Used for representing constant values with

descriptive names
const double TAX_RATE = 0.0775;
const int NUM_STATES = 50;

• Often named in uppercase letters

3-24

Defining and Initializing
Named Constants

• The value of a named constant must be
assigned when the variable is defined:
const int CLASS_SIZE = 24;

• An error occurs if you try to change the value
stored in a named constant after it is
defined:
// This won’t work

 CLASS_SIZE = CLASS_SIZE + 1;

3-25

Benefits of Named Constants

• They make program code more readable by
documenting the purpose of the constant in
the name:
const double TAX_RATE = 0.0775;

. . .

salesTax = purchasePrice * TAX_RATE;

• They improve accuracy and simplify program
maintenance:
 const double TAX_RATE = 0.0775; 3-26

3.6 Multiple and Combined Assignment

• The assignment operator (=) can be used
multiple times in an expression
x = y = z = 5;

• Associates right to left
x = (y = (z = 5));

3-27

Done Done Done
3rd 2nd 1st

Combined Assignment

• Applies an arithmetic operation to a
variable and assigns the result as the new
value of that variable

• Operators: += -= *= /= %=
• These are also called compound operators

or arithmetic assignment operators
• Example:
 sum += amt; is short for sum = sum + amt;

3-28

More Examples

 x += 5; means x = x + 5;
 x -= 5; means x = x – 5;
 x *= 5; means x = x * 5;
 x /= 5; means x = x / 5;
 x %= 5; means x = x % 5;
The right hand side is evaluated before the
combined assignment operation is done.
 x *= a + b; means x = x * (a + b);

3-29

3.7 Formatting Output

• We can control how output displays for numeric and string
data
– size
– position
– number of digits

• This requires the iomanip header file

3-30

Stream Manipulators

• Are used to control features of an output
field

• Some affect just the next value displayed
setw(x): Print a value in a field at least x
spaces wide.

–It will use more spaces if the specified field width is not big
enough.

–It right-justifies the value if it does not require x spaces.
–Decimal points in floating-point values use a space.
–All characters in strings, including space characters, use

space
3-31

Stream Manipulators

• Some affect values until changed again
– fixed: Use decimal notation (not E-notation)

for floating-point values.
– setprecision(x):

• When used with fixed, print floating-point value
using x digits after the decimal.

• Without fixed, print floating-point value using x
significant digits.

• Rounding is used if x is smaller than the number of
significant digits

3-32

Stream Manipulators

• Some additional manipulators:

– showpoint: Always print a decimal point for
floating-point values. This is useful with
fixed and setprecision when printing
monetary values.

– left, right: left- or right justification of a
value in a field.

3-33

Manipulator Examples

const double e = 2.718;
double price = 18.0; Displays
cout << setw(8) << e << endl; ^^^2.718
cout << left << setw(8) << e
 << endl; 2.718^^^
cout << setprecision(2);
cout << e << endl; 2.7
cout << fixed << e << endl; 2.72
cout << setw(6) << price; 18.00^

3-34

3.8 Working with Characters and Strings

• char: holds a single character

• string: holds a sequence of characters

• Both can be used in assignment statements

• Both can be displayed with cout and <<

3-35

String Input

Reading in a string object
string str;

cin >> str; // Reads in a string
 // with no blanks
getline(cin, str); // Reads in a string
 // that may contain
 // blanks

3-36

Character Input

Reading in a character:

char ch;

cin >> ch; // Reads in any non-blank char

cin.get(ch); // Reads in any char

ch=cin.get();// Reads in any char

cin.ignore();// Skips over next char in
 // the input buffer

3-37

 cin.ignore()

General form: cin.ignore(n,c);

• n – number of characters to skip

• c – stop when character c is encountered

How it works:

• It stops if c is encountered before n
characters have been skipped. Otherwise,
n characters are skipped.

• Use cin.ignore(); to skip a single
character 3-38

string Member Functions

• length() – the number of characters in a string

 string firstPrez="George Washington";
 int size=firstPrez.length(); // size is 17

• length() includes blank characters

• length() does not include the '\0' null
character that terminates the string

3-39

string Member Functions

• assign() – put repeated characters in a string.
• It can be used for formatting output.

 string equals;
 equals.assign(80,'=');
 . . .
 cout << equals << endl;
 cout << "Total: " << total << endl;

3-40

Highlight

String Operators

= Assigns a value to a string
string words;
words = "Tasty ";

+ Joins two strings together
string s1 = "hot", s2 = "dog";
string food = s1 + s2; // food = "hotdog"

+= Concatenates a string onto the end of another one
words += food; // words now = "Tasty hotdog"

3-41

Using C-Strings

• A C-string is stored as an array of characters
• The programmer must indicate the maximum

number of characters at definition
const int SIZE = 5;
char temp[SIZE] = "Hot";

• NULL character (\0) is placed after final
character to mark the end of the string

• The programmer must make sure that the array
is big enough for desired use. temp can hold up
to 4 characters plus the \0.

3-42

H o t \0

C-String and Keyboard Input
• Reading in a C-string
const int SIZE = 10;
char Cstr[SIZE];
cin >> Cstr; // Reads in a C-string with no
 // blanks. It will write past the
 // end of the array if the input
 // string is too long.
cin.getline(Cstr, SIZE);
 // Reads in a C-string that may
 // contain blanks. Ensures that <= 9

 // chars are read in.
• You can also use setw() and width() to control input

field widths

3-43

C-String and Input Field Width
• The setw() stream manipulator can be used

with cin as well as with cout.
• When used with cin and a target C-string array,
setw() limits the number of characters that are
stored in the array
const int SIZE = 10;
char Cstr[SIZE];
cin >> setw(SIZE) >> Cstr;

• cin.width() can also provide this limit

cin.width(SIZE);

cin >> Cstr;

3-44

C-String Initialization vs. Assignment

• A C-string can be initialized at the time of its
creation, just like a string object
const int SIZE = 10;

 char month[SIZE] = "April";
• However, a C-string cannot later be assigned a

value using the = operator; you must use the
strcpy() function

 char month[SIZE];
 month = "August" // wrong!
 strcpy(month, "August"); //correct

3-45

More on C-Strings and Keyboard Input

• cin can be used to put a single word from the
keyboard into a C-string

• The programmer must use cin.getline() to
read an input string that contains spaces

• Note that cin.getline() ≠ getline()
• The programmer must indicate the target C-string

and maximum number of characters to read:
 const int SIZE = 25;
 char name[SIZE];
 cout << "What's your name? ";
 cin.getline(name, SIZE);

3-46

3.9 More Mathematical Library Functions

• These require cmath header file
• They take double arguments and return a double
• Some commonly used functions

3-47

abs Absolute value
sin Sine
cos Cosine
tan Tangent
sqrt Square root
log Natural (e) log
pow Raise to a power

3.10 Random Numbers

• Random number - a value that is chosen from a
set of values. Each value in the set has an equal
likelihood of being chosen.

• Random numbers are used in games and in
simulations.

• You have to use the cstdlib header file

3-48

Getting Random Numbers

• rand
– Returns a random number between 0 and the

largest int the computer holds
– Will yield the same sequence of numbers each

time the program is run
• srand(x)

– Initializes random number generator with
 unsigned int x. x is the “seed value”.
– This should be called at most once in a program

3-49

More on Random Numbers

• Use time() to generate different seed values
each time that a program runs:
#include <ctime> //needed for time()
…
unsigned seed = time(0);
srand(seed);

• Random numbers can be scaled to a range:
int max=6;
int num;
num = rand() % max + 1;

3-50

Thanks

